modular arithmetic - определение. Что такое modular arithmetic
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое modular arithmetic - определение

SYSTEM OF ALGEBRAIC OPERATIONS DEFINED FOR REMAINDERS UNDER DIVISION BY A FIXED POSITIVE INTEGER; SYSTEM OF ARITHMETIC FOR INTEGERS, WHERE NUMBERS "WRAP AROUND" UPON REACHING A CERTAIN VALUE—THE MODULUS
ModularArithmetic; Modulo arithmetic; Clock arithmetic; Residue class; Mod out; Integers mod n; Advanced modular arithmetic theory; Modular arithmetic theory; Common residue; Modular multiplication; Modular Math; Modular arithmatic; Complete set of residues; Congruence arithmetic; Modular arithmetics; Congruence class; Modulo Arithmetic; Modular Arithmetic; Clock Arithmetic; Modular division; Z/nZ; Mod division; Modular math; Modulus arithmetic; Integers modulo n; Congruence modulo n; Least residue system modulo m; Complete residue system modulo m; Mod 12; Congruence modulo m; Z/n; Applications of modular arithmetic; Ring of integers modulo n; Modulus (modular arithmetic); Congruent (integers); Congruence (integers); Modulo 24
  • Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12.

modular arithmetic         
<mathematics> (Or "clock arithmetic") A kind of integer arithmetic that reduces all numbers to one of a fixed set [0..N-1] (this would be "modulo N arithmetic") by effectively repeatedly adding or subtracting N (the "modulus") until the result is within this range. The original mathematical usage considers only __equivalence__ modulo N. The numbers being compared can take any values, what matters is whether they differ by a multiple of N. Computing usage however, considers modulo to be an operator that returns the remainder after integer division of its first argument by its second. Ordinary "clock arithmetic" is like modular arithmetic except that the range is [1..12] whereas modulo 12 would be [0..11]. (2003-03-28)
modulo arithmetic         
Modular weapon system         
MODULAR FIREARM WHICH EASILY CAN BE RECONFIGURED FOR VARIOUS APPLICATIONS, FOR EXAMPLE BY CHANGING CHAMBERING OR BARREL LENGTH
Modular Weapons System; Modular Weapon; Modular weapon; Modular Weapon System
A modular weapon system (MWS) is any weapon equipment which has removable core components (or "modules") that can be reconfigured/interchanged to give the weapon different capabilities to adapt to various applications. Modularity can provide several advantages to military organizations, such as the versatility of allowing units to quickly tailor their weapons to best suit the immediate tactical needs, to quickly repair/exchange malfunctioned components, and to reduce overall logistical burdens and costs.

Википедия

Modular arithmetic

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in 7 + 8 = 15, but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic modulo 12. In terms of the definition below, 15 is congruent to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock.